Definition: Suppose the $m \times n$ matrix A has column vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ in \mathbb{R}^m . We define the column space of A to be

$$\operatorname{col}(A) = \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \tag{1}$$

Note 1: The column space is the set of *all* linear combinations of the column vectors of A.

Example 1: Consider the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & -1 \\ 1 & 4 & -3 \end{bmatrix}$. Is the vector $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ 11 \end{bmatrix}$ in col(A)? If so find a vector \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$.

Note 2: A vector **b** is in col(A) if and only if the linear system $A\mathbf{x} = \mathbf{b}$ is *consistent*.

Note 3: The linear system is $A\mathbf{x} = \mathbf{b}$ is consistent for all vectors \mathbf{b} if and only if $col(A) = \mathbb{R}^m$. In this case we say that the column vectors of A span (or generate) \mathbb{R}^m .

Example 2: For example, let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Add -1 times the first row to the second row to get $C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Show that the vector $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is in $\operatorname{col}(A)$ but \mathbf{b} is *not* in $\operatorname{col}(C)$.

Note 4: Elementary row operations usually *change* the column space of a matrix.